第12章 基本粒子和自然的力(2) (1/2)
笔趣阁 www.bibiquge.com,时间简史无错无删减全文免费阅读!
然而,电磁力在原子和分子的小尺度下起主要作用。在带负电的电子和带正电的核中的质子之间的电磁力使得电子围绕着原子的核公转,正如同引力使得地球围绕着太阳公转一样。人们将电磁吸引力描绘成是由于交换大量称作光子的无质量的自旋为1的虚粒子引起的。重复一下,这里交换的光子是虚粒子。但是,电子从一个允许轨道转变到另一个离核更近的允许轨道时,释放能量并且发射出实光子——如果其波长适当,则作为可见光可被肉眼观察到,或可用诸如照相底版的光子探测器观察到。同样,如果一个光子和原子相碰撞,可将电子从离核较近的允许轨道移动到较远的轨道。这样光子的能量被消耗掉,它也就被吸收了。
第三种力称为弱核力。它负责放射性现象,并只作用于自旋为1/2的所有物质粒子,而对诸如光子、引力子等自旋为0、1或2的粒子不起作用。直到1967年伦敦帝国学院的阿伯达斯·萨拉姆和哈佛的史蒂芬·温伯格提出了弱作用和电磁作用的统一理论后,弱作用才被很好地理解。此举在物理学界所引起的震动,可与大约100年前麦克斯韦统一电学和磁学相提并论。他们提出,除了光子,还存在其他3个自旋为1的被统称作重矢量玻色子的粒子,它们携带弱力。它们称作W+(W正)、W-(W负)和Z(Z零),每一个都具有大约100吉电子伏的质量(1吉电子伏为10亿电子伏)。温伯格-萨拉姆理论展现了称作对称自发破缺的性质。这意味着,在低能量下一些看起来完全不同的粒子,事实上发现都只是同一种粒子处于不同的状态。所有这些粒子在高能量下都有相似的行为。这个效应和轮赌盘上的轮赌球的行为相类似。在高能量下(当这轮子转得很快时),这球的行为基本上只有一个方式——即不断地滚动着。但是随着轮子变慢下来,球的能量减小,最终球就陷到轮子上的37个槽中的一个里去。换言之,在低能下球可以存在于37种不同的状态。
如果由于某种原因,我们只能在低能下观察球,我们就会以为存在37种不同类型的球!
在温伯格·萨拉姆理论中,当能量远远超过100吉电子伏时,这3种新粒子和光子都以相似的方式行为。但是,大部分正常情况下粒子能量要比这低,粒子之间的对称被破坏了。W+、W-和Z。得到了大的质量,使之携带的力变成非常短程。萨拉姆和温伯格提出此理论时,很少人相信他们,因为加速器还未强大到将粒子加速到产生实的W+、W-和Z粒子所需的100吉电子伏的能量。但在此后的十几年里,在较低能量下这个理论的其他预言和实验符合得这样好,使他们和也在哈佛的谢尔登·格拉肖一起获得1979年的诺贝尔物理学奖。格拉肖提出过一个类似的统一电磁和弱作用的理论。由于1983年在CERN(欧洲核子研究中心)发现了具有被正确预言的质量和其他性质的光子的3个有质量的伴侣,使得诺贝尔委员会避免了犯错误的难堪。领导几百名物理学家作出此发现的卡罗·鲁比亚和开发了被使用的反物质储藏系统的CERN工程师西蒙·范德·米尔分享了1984年的诺贝尔奖。(除非你已经是巅峰人物,当今要在实验物理学上留下痕迹极其困难!)第四种力是强核力。它将质子和中子中的夸克束缚在一起,并将原子核中的质子和中子束缚在一起。人们相信,称为胶子的另一种自旋为1的粒子携带强作用力。它只能与自身以及与夸克相互作用。强核力具有一种称为禁闭的古怪性质:它总是把粒子束缚成不带颜色的结合体。
由于夸克有颜色(红、绿或蓝),人们不能得到单独的夸克自身。相反,一个红夸克必须用一串胶子和一个绿夸克以及一个蓝夸克连接在一起(红+绿+蓝=白)。这样的三胞胎构成了一个质子或中子。其他的可能性是由一个夸克和一个反夸克组成的对(红+反红,或绿+反绿,或蓝+反蓝=白)。这样的结合体构成了称为介子的粒子。介子是不稳定的,因为夸克和反夸克会相互湮灭,而产生电子和其他粒子。类似地,由于胶子也有颜色,色禁闭使得人们不可能得到单独的胶子自身。相反,人们所能得到的胶子的团,其叠加起来的颜色必须是白的。这样的团形成了称为胶球的不稳定粒子。
色禁闭使得人们观察不到一个孤立的夸克或胶子,这事实使得将夸克和胶子当作粒子的整个见解看起来有点玄学的味道。然而,强核力还有一种叫做渐近自由的性质,它使得夸克和胶子成为意义明确的概念。在正常能量下,强核力确实很强,它将夸克紧紧地捆在一起。但是,大型粒子加速器的实验指出,强作用力在高能量下变得弱得多,夸克和胶子的行为就几乎像自由粒子那样。
统一电磁力和弱核力的成功,使人们多次试图将这两种力和强核力合并在所谓的大统一理论(或GUT)之中。
这名字相当夸张:得到的理论并不那么辉煌,也没能将全部力都统一进去,因为它并不包含引力。它们也不是真正完整的理论,因为它们包含了许多不能从这理论中预言而必须人为选择去适合实验的参数。尽管如此,它们可能是朝着完备的统一理论推进的一步。GUT的基本思想是这样:正如前面提到的,在高能量下强核力变弱了;另一方面,不是渐近自由的电磁力和弱力在高能量下变强了。在某个非常高的叫做大统一能量的能量下,这3种力都具有同样的强度,并因此可看成一个单独的力的不同方面。在这能量下,GUT还预言了自旋为1/2的不同物质粒子(如夸克和电子)也会根本上都变成一样,这样导致了另一种统一。
大统一能量的数值还知道得不太清楚,可能至少有1000万亿吉电子伏特。而目前粒子加速器只能使大致能量为100吉电子伏的粒子相碰撞,而计划建造的机器的能量可升到几千吉电子伏。要建造足以将粒子加速到大统一能量的机器,其体积必须和太阳系一样大——这在现代经济环境下不太可能做到。因此,不可能在实验室里直接检验大统一理论。然而,如同在弱电统一理论中那样,我们可以检验它在低能量下的推论。
其中最有趣的预言是,构成通常物质的大部分质量的质子能够自发衰变成诸如反电子之类更轻的粒子。之所以可能,其原因在于,在大统一能量下,夸克和反电子之间没有本质的不同。在正常情况下一个质子中的三个夸克没有足够能量转变成反电子,由于不确定性原理意味着质子中夸克的能量不可能严格不变,其中一个夸克会非常偶然地获得足够能量进行这种转变... -->>
然而,电磁力在原子和分子的小尺度下起主要作用。在带负电的电子和带正电的核中的质子之间的电磁力使得电子围绕着原子的核公转,正如同引力使得地球围绕着太阳公转一样。人们将电磁吸引力描绘成是由于交换大量称作光子的无质量的自旋为1的虚粒子引起的。重复一下,这里交换的光子是虚粒子。但是,电子从一个允许轨道转变到另一个离核更近的允许轨道时,释放能量并且发射出实光子——如果其波长适当,则作为可见光可被肉眼观察到,或可用诸如照相底版的光子探测器观察到。同样,如果一个光子和原子相碰撞,可将电子从离核较近的允许轨道移动到较远的轨道。这样光子的能量被消耗掉,它也就被吸收了。
第三种力称为弱核力。它负责放射性现象,并只作用于自旋为1/2的所有物质粒子,而对诸如光子、引力子等自旋为0、1或2的粒子不起作用。直到1967年伦敦帝国学院的阿伯达斯·萨拉姆和哈佛的史蒂芬·温伯格提出了弱作用和电磁作用的统一理论后,弱作用才被很好地理解。此举在物理学界所引起的震动,可与大约100年前麦克斯韦统一电学和磁学相提并论。他们提出,除了光子,还存在其他3个自旋为1的被统称作重矢量玻色子的粒子,它们携带弱力。它们称作W+(W正)、W-(W负)和Z(Z零),每一个都具有大约100吉电子伏的质量(1吉电子伏为10亿电子伏)。温伯格-萨拉姆理论展现了称作对称自发破缺的性质。这意味着,在低能量下一些看起来完全不同的粒子,事实上发现都只是同一种粒子处于不同的状态。所有这些粒子在高能量下都有相似的行为。这个效应和轮赌盘上的轮赌球的行为相类似。在高能量下(当这轮子转得很快时),这球的行为基本上只有一个方式——即不断地滚动着。但是随着轮子变慢下来,球的能量减小,最终球就陷到轮子上的37个槽中的一个里去。换言之,在低能下球可以存在于37种不同的状态。
如果由于某种原因,我们只能在低能下观察球,我们就会以为存在37种不同类型的球!
在温伯格·萨拉姆理论中,当能量远远超过100吉电子伏时,这3种新粒子和光子都以相似的方式行为。但是,大部分正常情况下粒子能量要比这低,粒子之间的对称被破坏了。W+、W-和Z。得到了大的质量,使之携带的力变成非常短程。萨拉姆和温伯格提出此理论时,很少人相信他们,因为加速器还未强大到将粒子加速到产生实的W+、W-和Z粒子所需的100吉电子伏的能量。但在此后的十几年里,在较低能量下这个理论的其他预言和实验符合得这样好,使他们和也在哈佛的谢尔登·格拉肖一起获得1979年的诺贝尔物理学奖。格拉肖提出过一个类似的统一电磁和弱作用的理论。由于1983年在CERN(欧洲核子研究中心)发现了具有被正确预言的质量和其他性质的光子的3个有质量的伴侣,使得诺贝尔委员会避免了犯错误的难堪。领导几百名物理学家作出此发现的卡罗·鲁比亚和开发了被使用的反物质储藏系统的CERN工程师西蒙·范德·米尔分享了1984年的诺贝尔奖。(除非你已经是巅峰人物,当今要在实验物理学上留下痕迹极其困难!)第四种力是强核力。它将质子和中子中的夸克束缚在一起,并将原子核中的质子和中子束缚在一起。人们相信,称为胶子的另一种自旋为1的粒子携带强作用力。它只能与自身以及与夸克相互作用。强核力具有一种称为禁闭的古怪性质:它总是把粒子束缚成不带颜色的结合体。
由于夸克有颜色(红、绿或蓝),人们不能得到单独的夸克自身。相反,一个红夸克必须用一串胶子和一个绿夸克以及一个蓝夸克连接在一起(红+绿+蓝=白)。这样的三胞胎构成了一个质子或中子。其他的可能性是由一个夸克和一个反夸克组成的对(红+反红,或绿+反绿,或蓝+反蓝=白)。这样的结合体构成了称为介子的粒子。介子是不稳定的,因为夸克和反夸克会相互湮灭,而产生电子和其他粒子。类似地,由于胶子也有颜色,色禁闭使得人们不可能得到单独的胶子自身。相反,人们所能得到的胶子的团,其叠加起来的颜色必须是白的。这样的团形成了称为胶球的不稳定粒子。
色禁闭使得人们观察不到一个孤立的夸克或胶子,这事实使得将夸克和胶子当作粒子的整个见解看起来有点玄学的味道。然而,强核力还有一种叫做渐近自由的性质,它使得夸克和胶子成为意义明确的概念。在正常能量下,强核力确实很强,它将夸克紧紧地捆在一起。但是,大型粒子加速器的实验指出,强作用力在高能量下变得弱得多,夸克和胶子的行为就几乎像自由粒子那样。
统一电磁力和弱核力的成功,使人们多次试图将这两种力和强核力合并在所谓的大统一理论(或GUT)之中。
这名字相当夸张:得到的理论并不那么辉煌,也没能将全部力都统一进去,因为它并不包含引力。它们也不是真正完整的理论,因为它们包含了许多不能从这理论中预言而必须人为选择去适合实验的参数。尽管如此,它们可能是朝着完备的统一理论推进的一步。GUT的基本思想是这样:正如前面提到的,在高能量下强核力变弱了;另一方面,不是渐近自由的电磁力和弱力在高能量下变强了。在某个非常高的叫做大统一能量的能量下,这3种力都具有同样的强度,并因此可看成一个单独的力的不同方面。在这能量下,GUT还预言了自旋为1/2的不同物质粒子(如夸克和电子)也会根本上都变成一样,这样导致了另一种统一。
大统一能量的数值还知道得不太清楚,可能至少有1000万亿吉电子伏特。而目前粒子加速器只能使大致能量为100吉电子伏的粒子相碰撞,而计划建造的机器的能量可升到几千吉电子伏。要建造足以将粒子加速到大统一能量的机器,其体积必须和太阳系一样大——这在现代经济环境下不太可能做到。因此,不可能在实验室里直接检验大统一理论。然而,如同在弱电统一理论中那样,我们可以检验它在低能量下的推论。
其中最有趣的预言是,构成通常物质的大部分质量的质子能够自发衰变成诸如反电子之类更轻的粒子。之所以可能,其原因在于,在大统一能量下,夸克和反电子之间没有本质的不同。在正常情况下一个质子中的三个夸克没有足够能量转变成反电子,由于不确定性原理意味着质子中夸克的能量不可能严格不变,其中一个夸克会非常偶然地获得足够能量进行这种转变... -->>
本章未完,点击下一页继续阅读